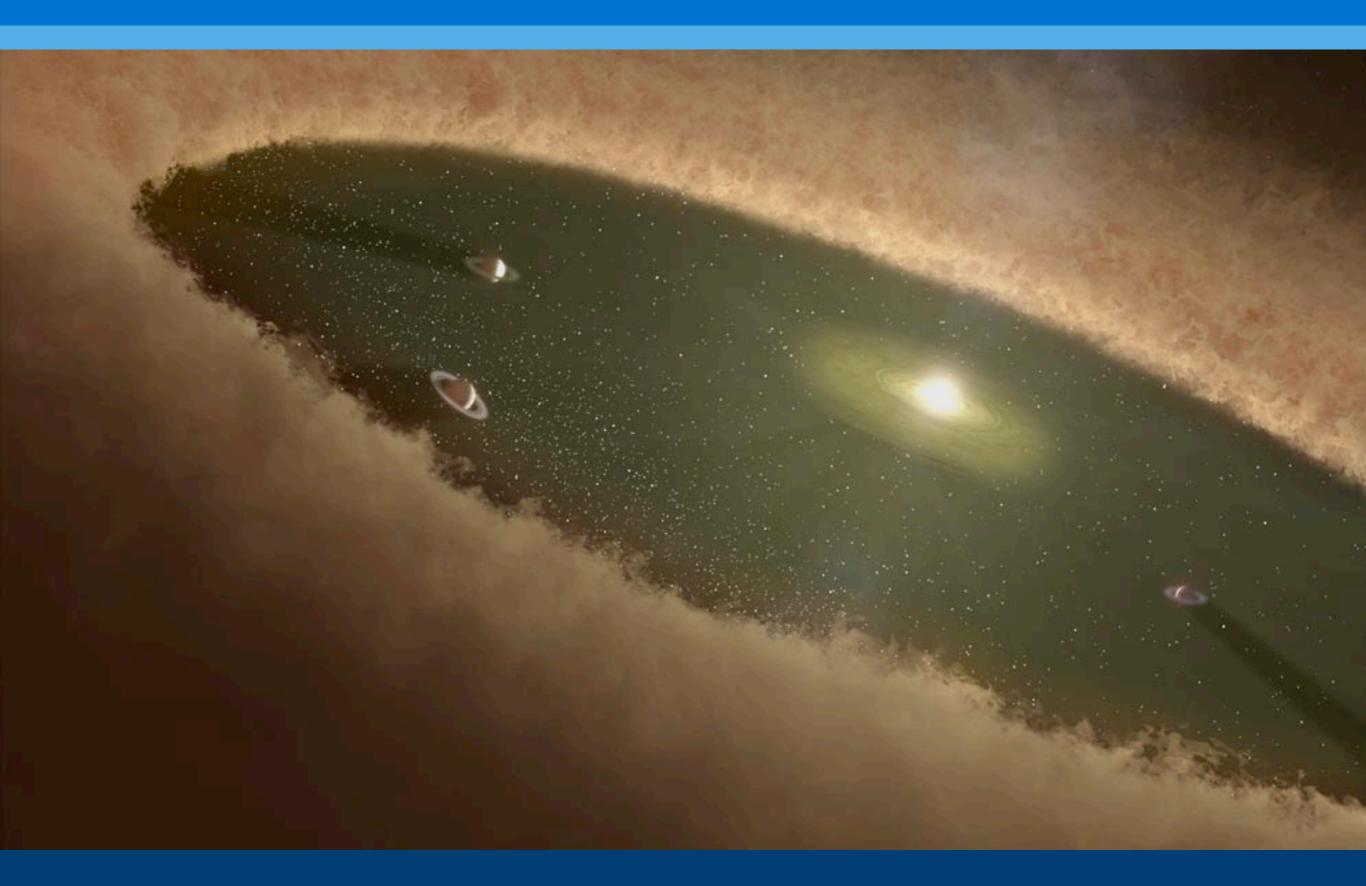


- 1. Multi-planetary systems
- 2. Saturn's Rings
- 3. The collisional N-body code REBOUND

Hanno Rein @ NASA Goddard, January 2012

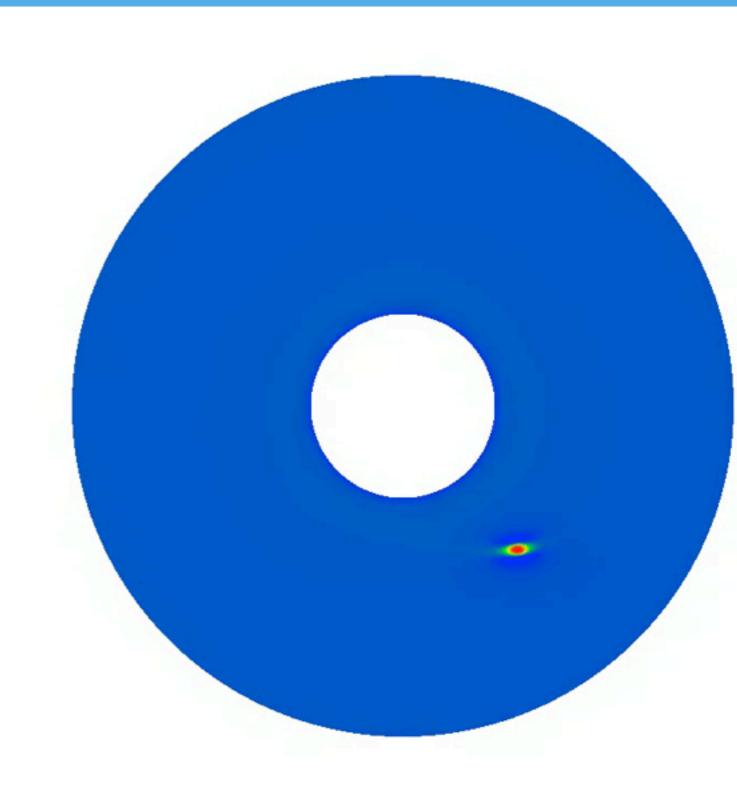
Planet formation



Migration in a non-turbulent disc

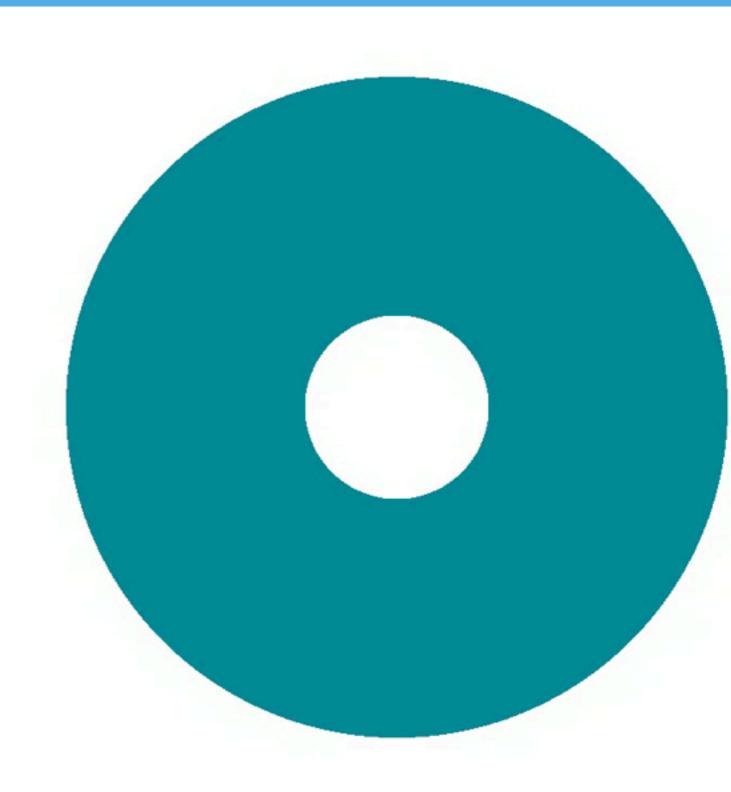
Migration - Type I

- Low mass planets
- No gap opening in disc
- Migration rate is fast
- Depends strongly on thermodynamics of the disc

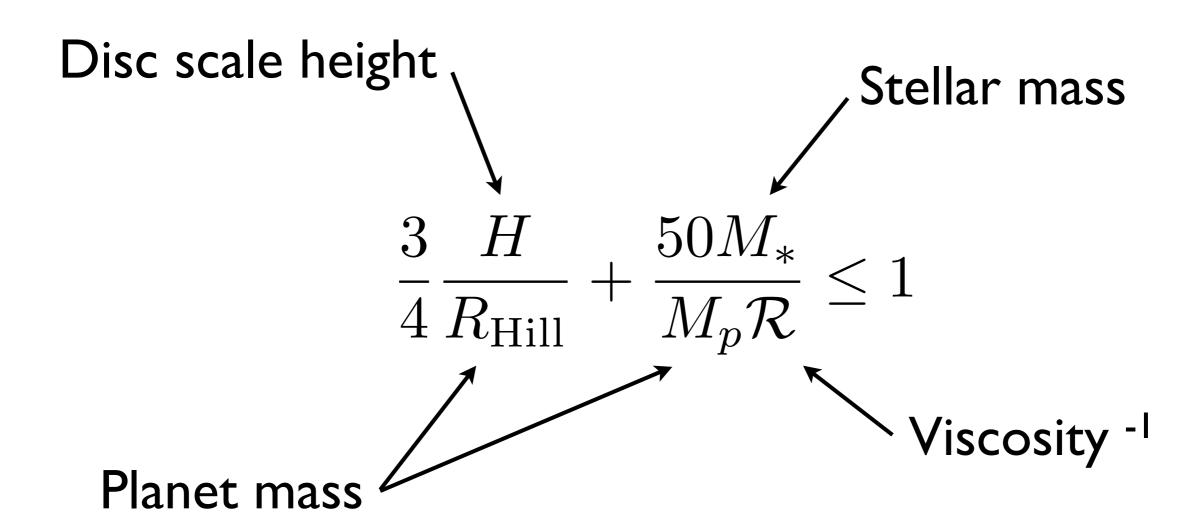


Migration - Type II

- Massive planets (typically bigger than Saturn)
- Opens a (clear) gap
- Migration rate is slow
- Follows viscous evolution of the disc

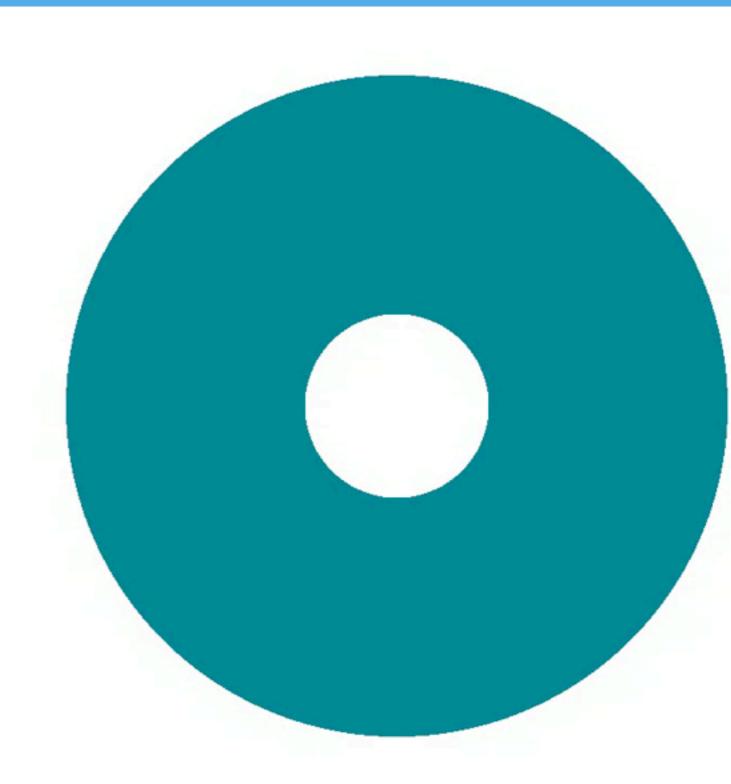


Gap opening criteria



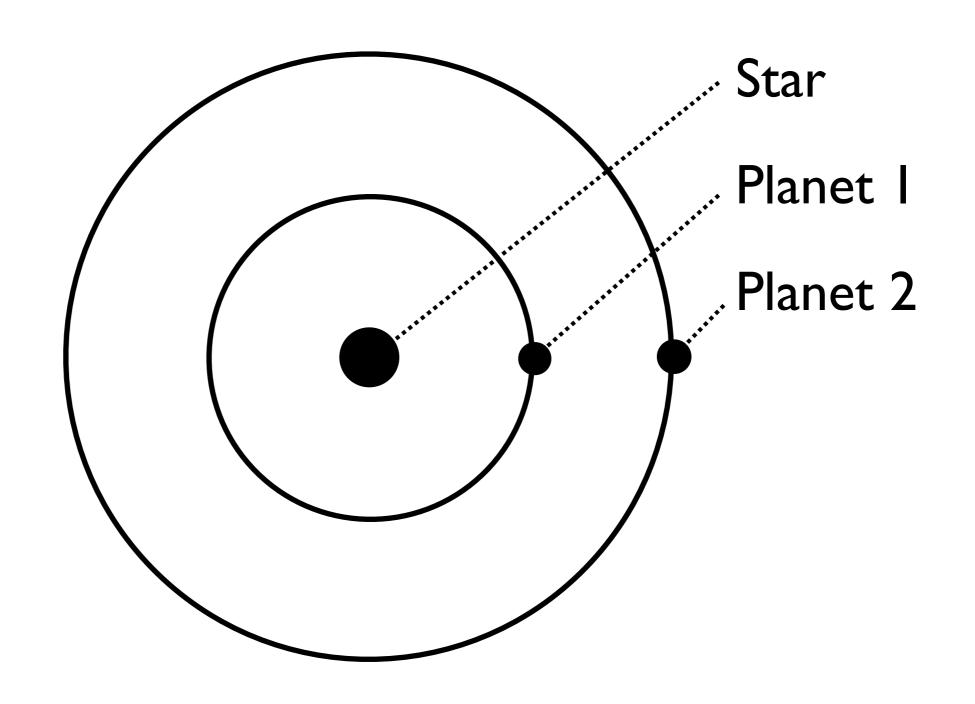
Migration - Type III

- Massive disc
- Intermediate planet mass
- Tries to open gap
- Very fast, few orbital timescales

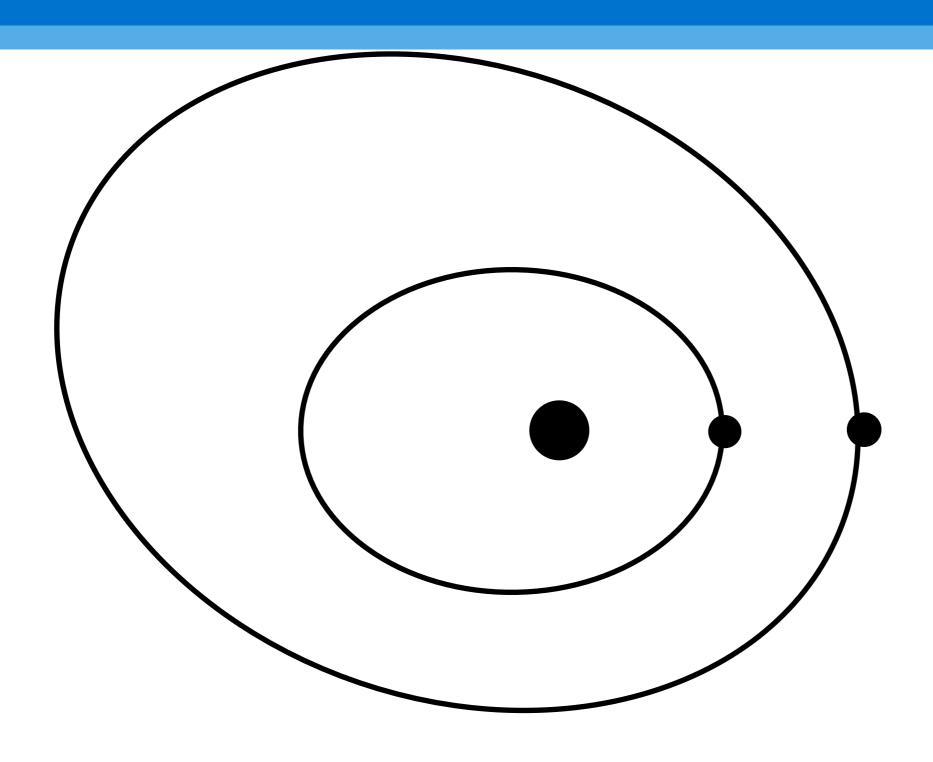


Resonance capture

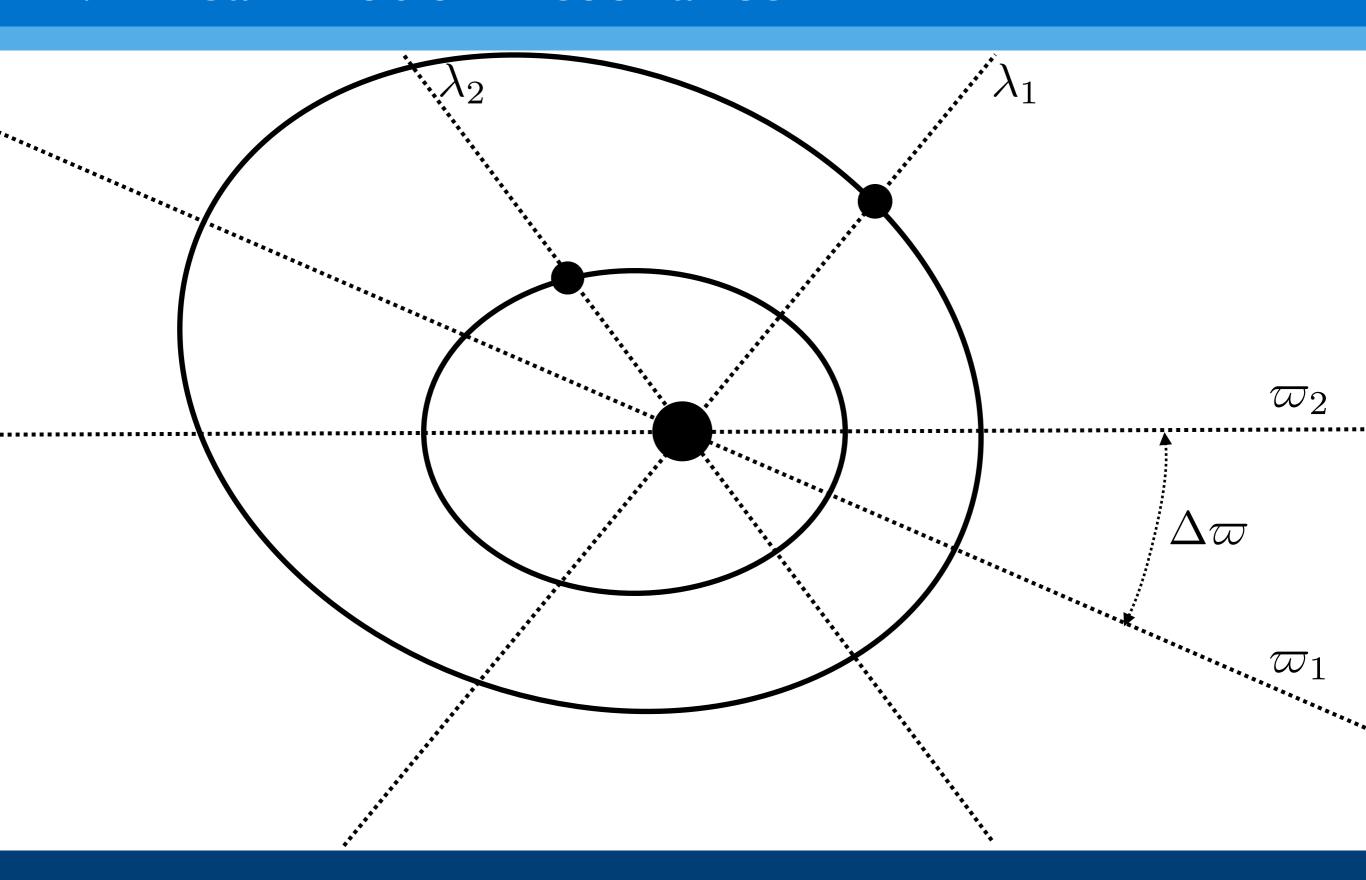
2:1 Mean Motion Resonance



2:1 Mean Motion Resonance



2:1 Mean Motion Resonance



Resonant angles

Fast varying angles

$$\lambda_1 - \varpi_1$$
 $\lambda_2 - \varpi_2$

Slowly varying combinations

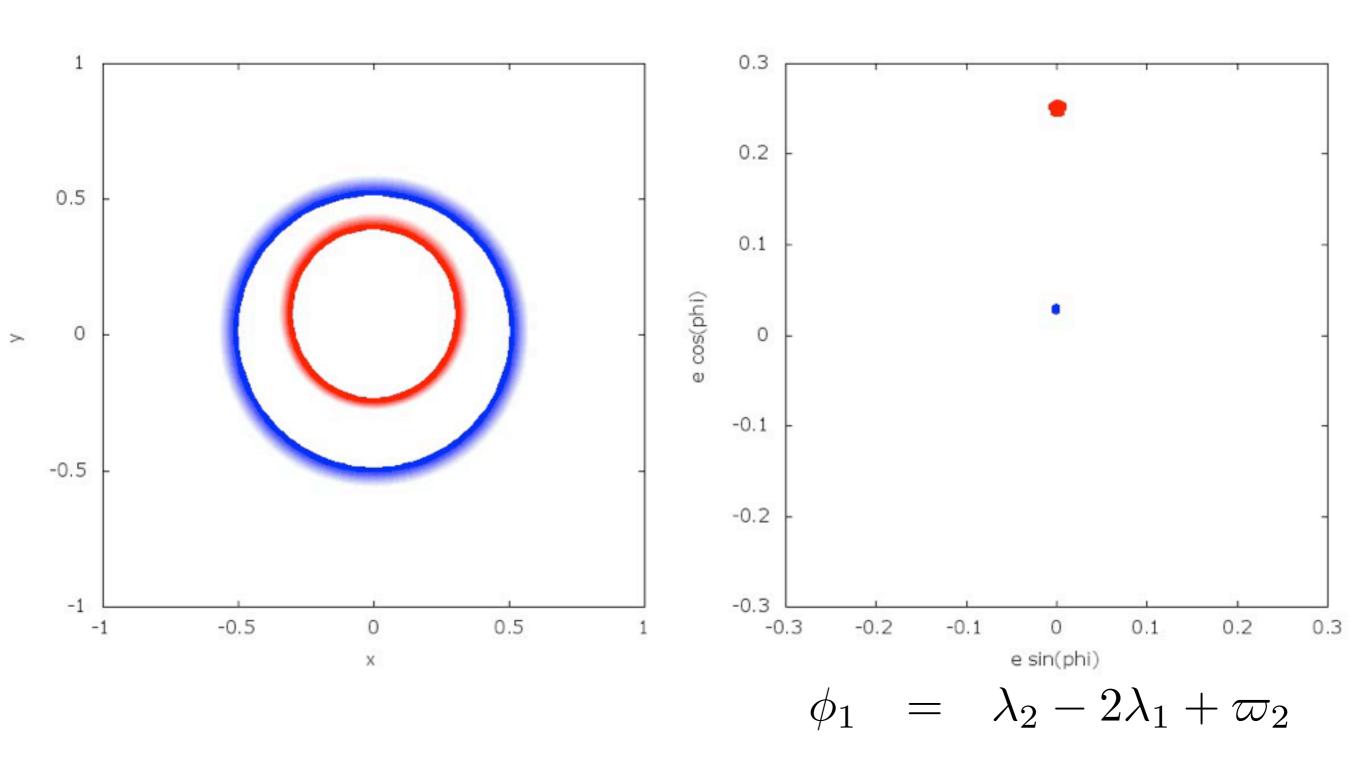
$$\phi_1 = \lambda_2 - 2\lambda_1 + \varpi_2$$

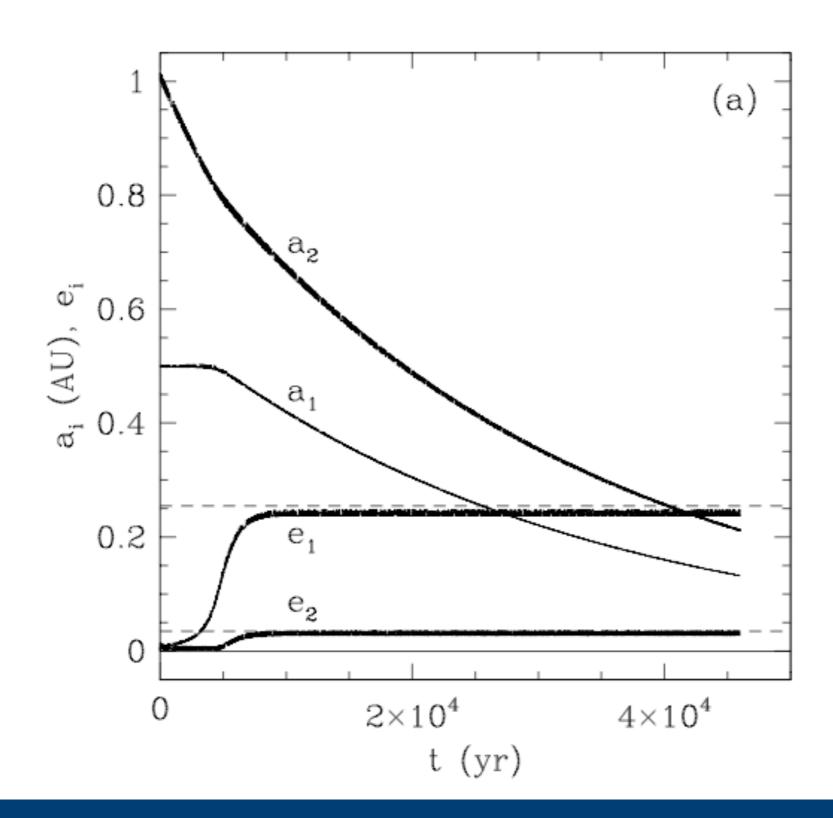
$$\phi_2 = \lambda_2 - 2\lambda_1 + \varpi_1$$

$$\Delta \varpi = \varpi_1 - \varpi_2$$

Two are linear independent

Non-turbulent resonance capture: two planets





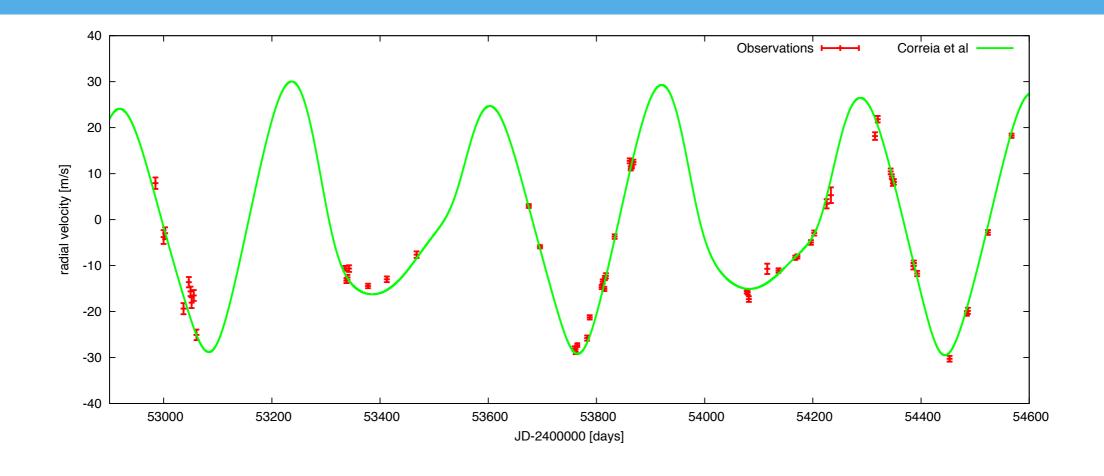
Take home message I

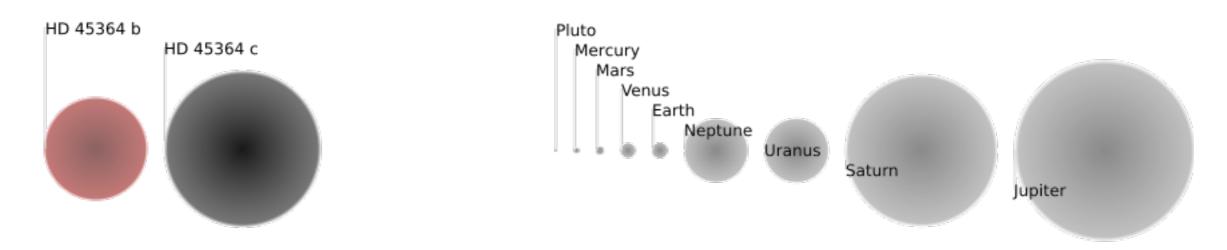
planet + disc = migration

2 planets + migration = resonance

HD 45364

HD45364

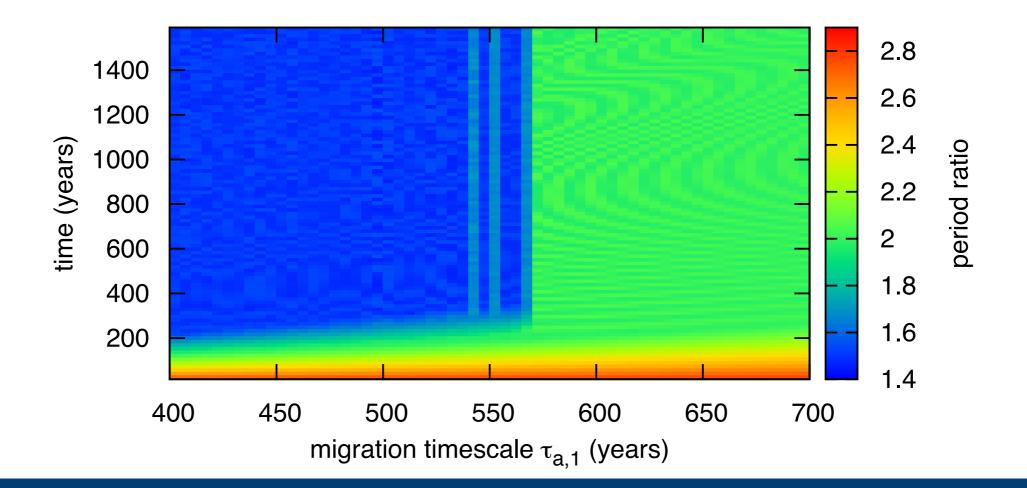




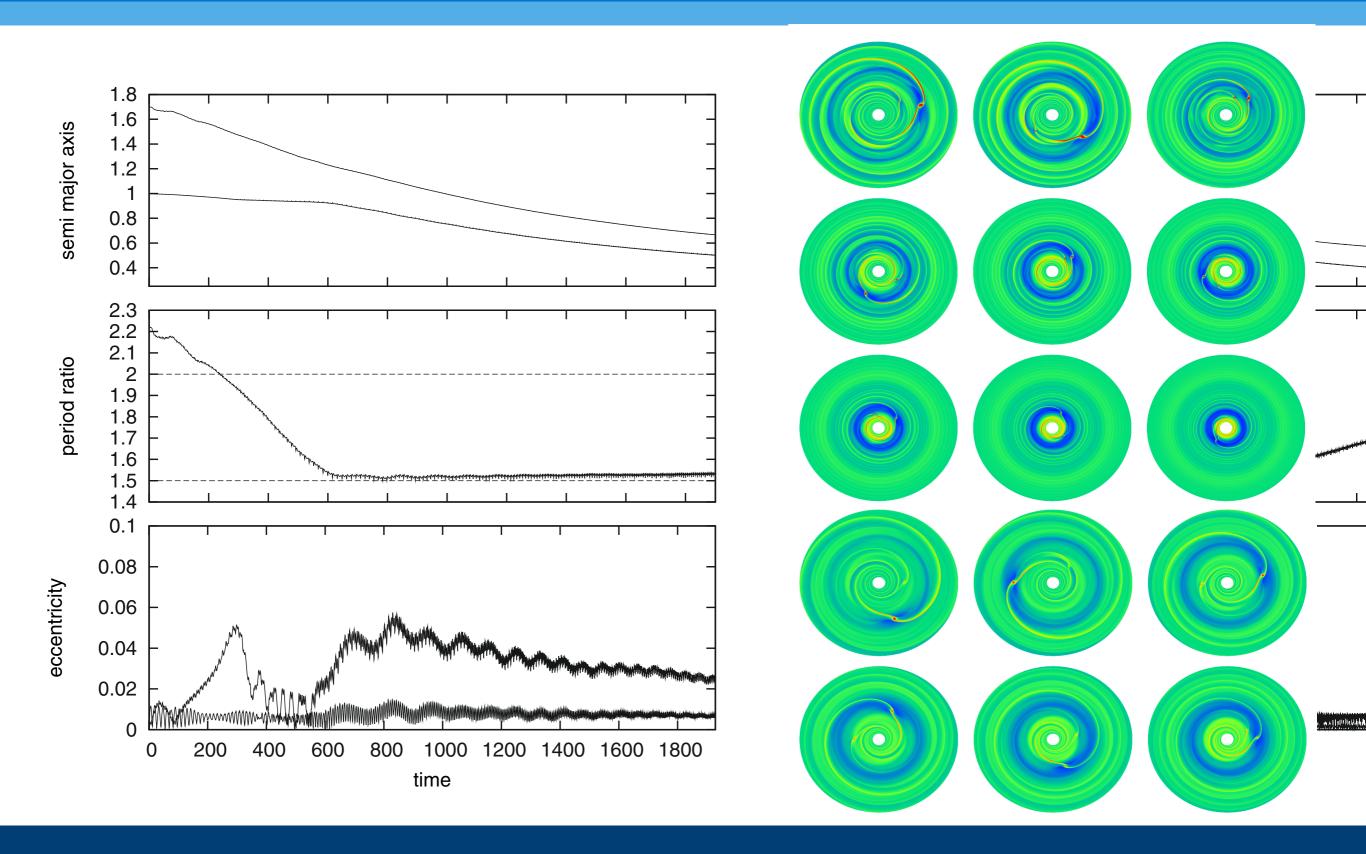
Formation scenario for HD45364

- Two migrating planets
- Infinite number of resonances

- Migration speed is crucial
- Resonance width and libration period define critical migration rate



Formation scenario for HD45364



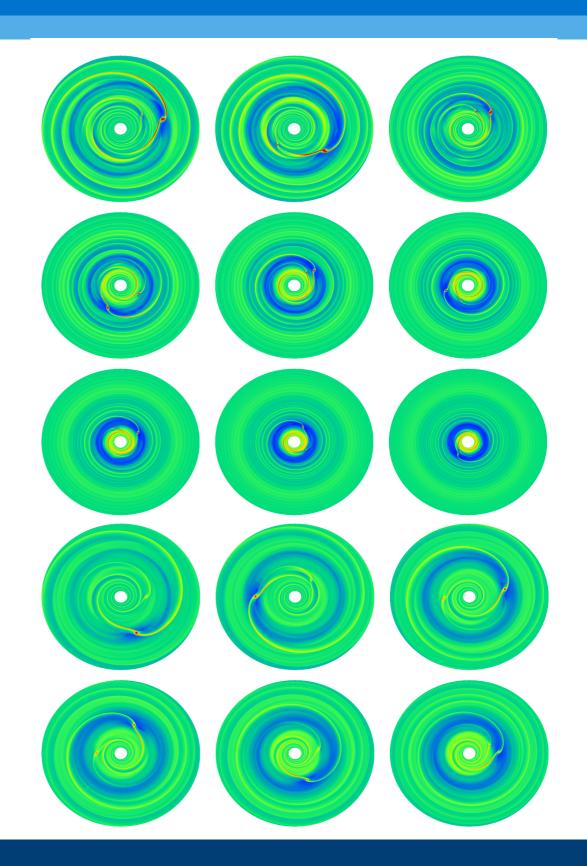
Formation scenario for HD45364

Massive disc (5 times MMSN)

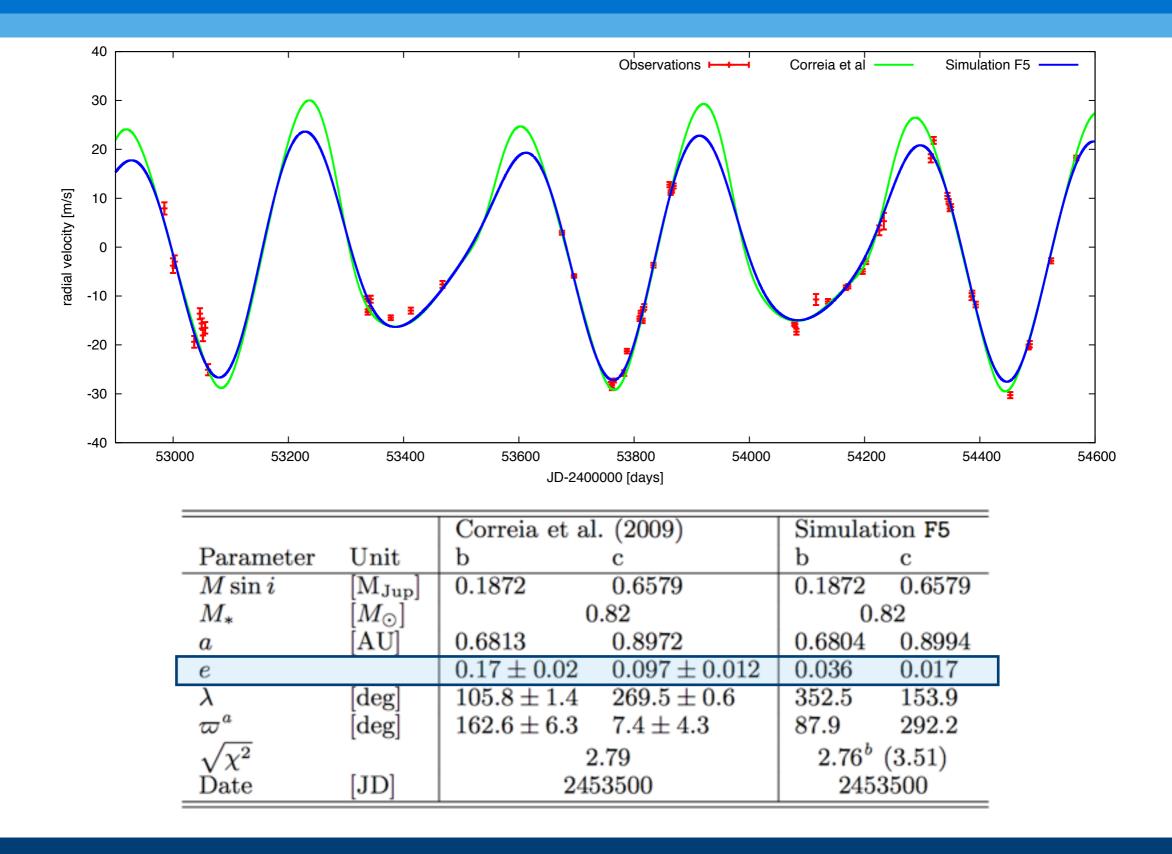
- Short, rapid Type III migration
- Passage of 2:1 resonance
- Capture into 3:2 resonance

Large scale-height (0.07)

- Slow Type I migration once in resonance
- Resonance is stable
- Consistent with radiation hydrodynamics



Formation scenario leads to a better 'fit'

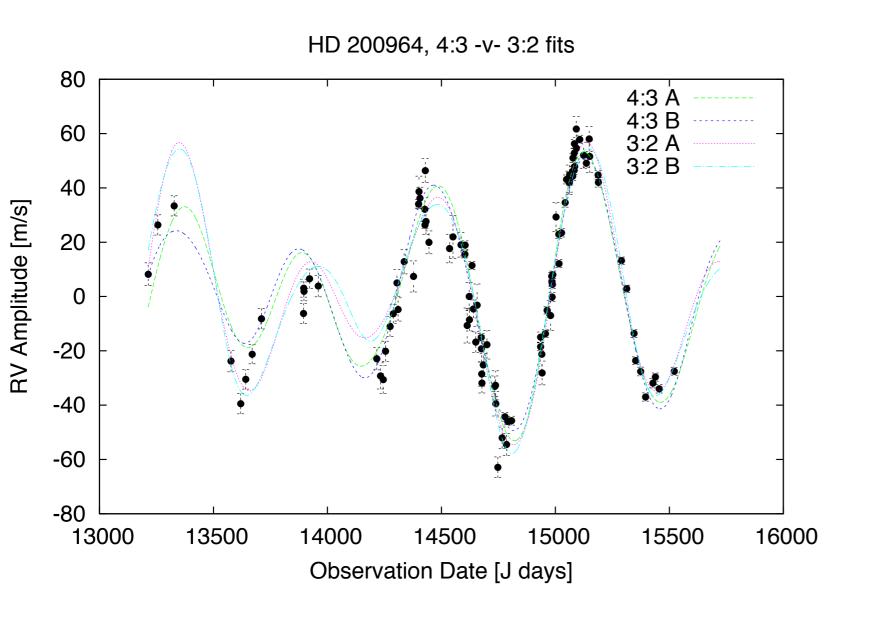


Take home message II

Migration scenarios can explain the dynamical configuration of many systems in amazing detail

HD200964 The impossible system?

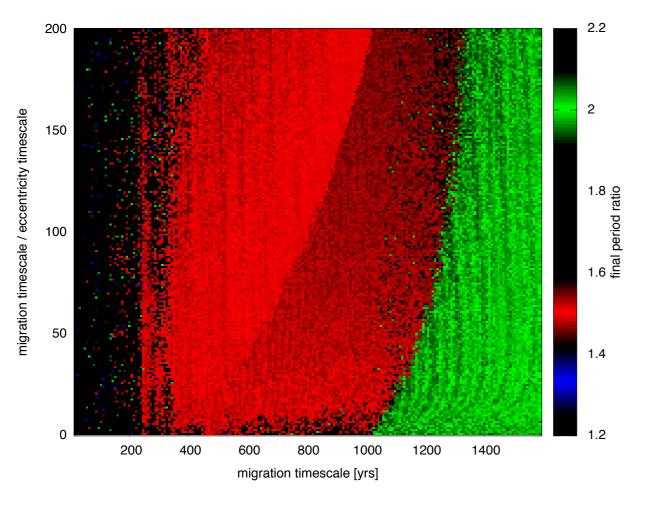
Radial velocity curve of HD200964



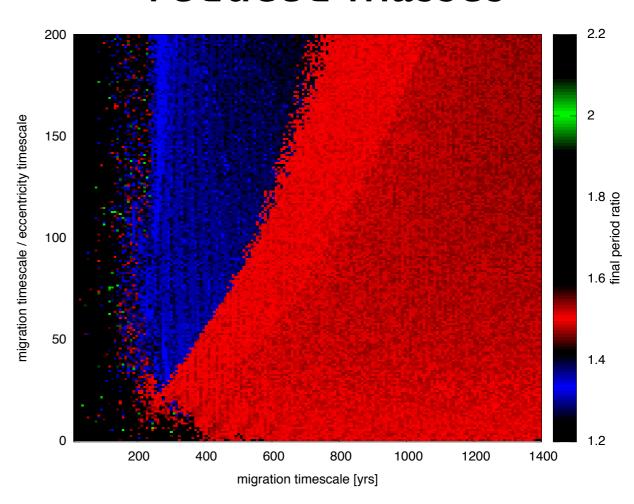
- Two massive planets
 I.8 M_{Jup} and 0.9 M_{Jup}
- Period ratio either3:2 or 4:3
- Another similar system, to be announced soon
- How common is 4:3?
- Formation?

Standard disc migration doesn't work

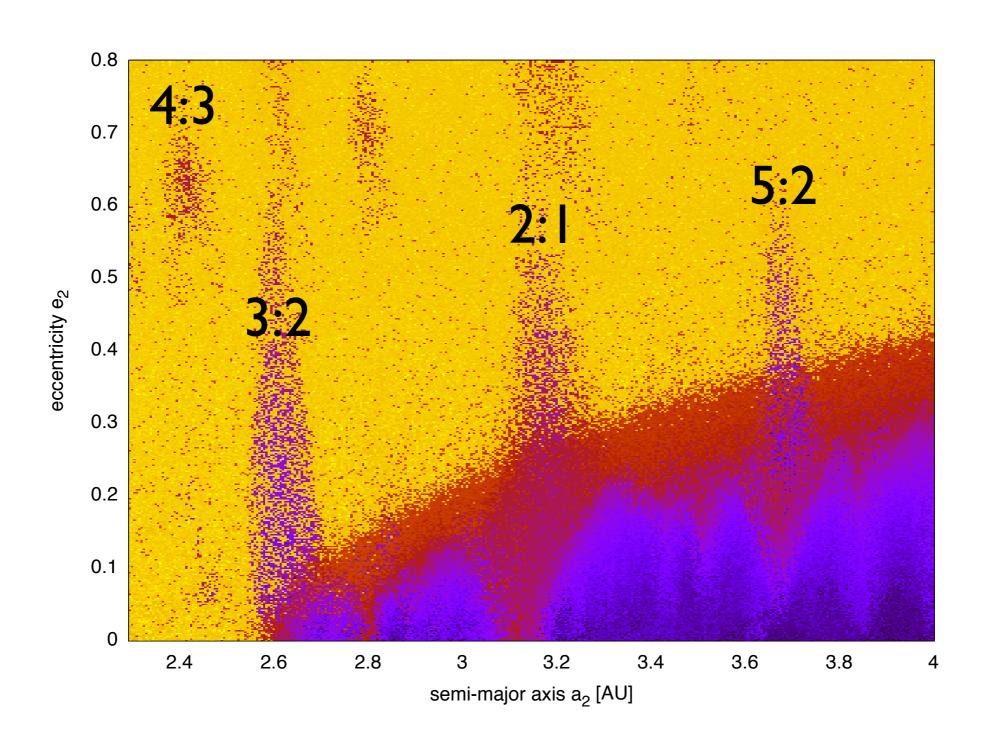
observed masses



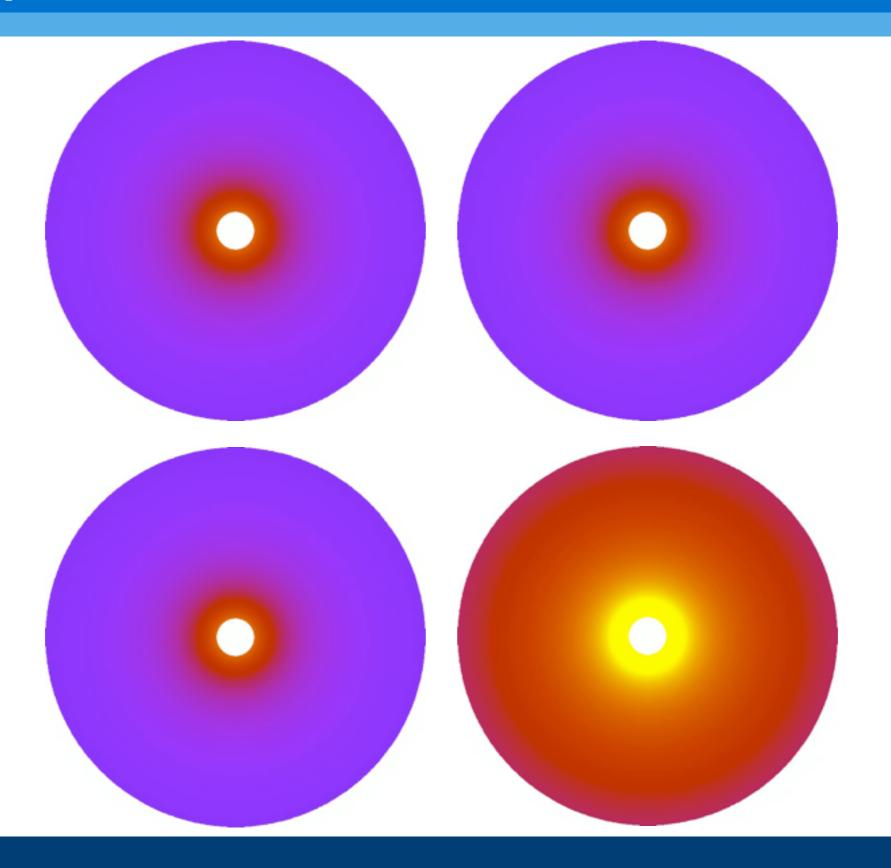
reduced masses



Stability of HD200964



Hydrodynamical simulations



HD200964

- In situ formation?
- Main accretion while in 4:3 resonance?
- Planet planet scattering?
- A third planet?
- Observers screwed up?

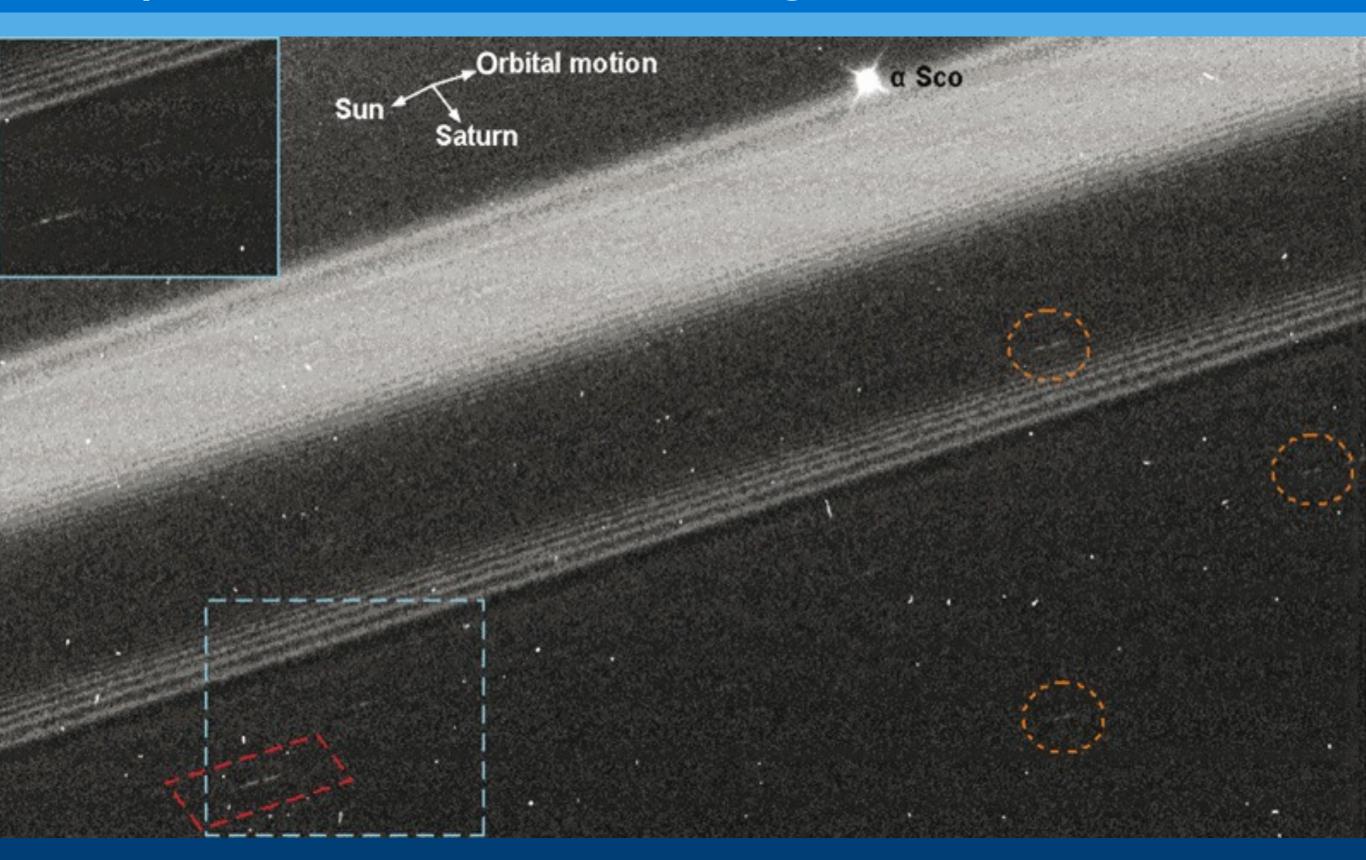
Take home message III

There is still a lot that we do not understand

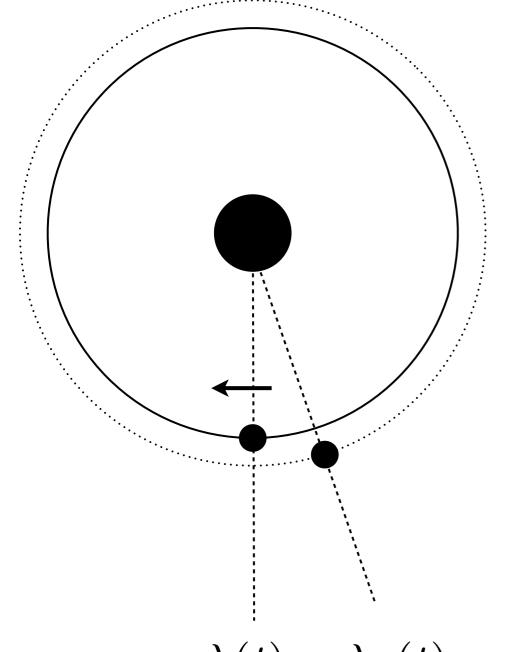
Moonlets in Saturn's Rings

Cassini spacecraft

Propeller structures in A-ring



Longitude residual



Mean motion [rad/s]

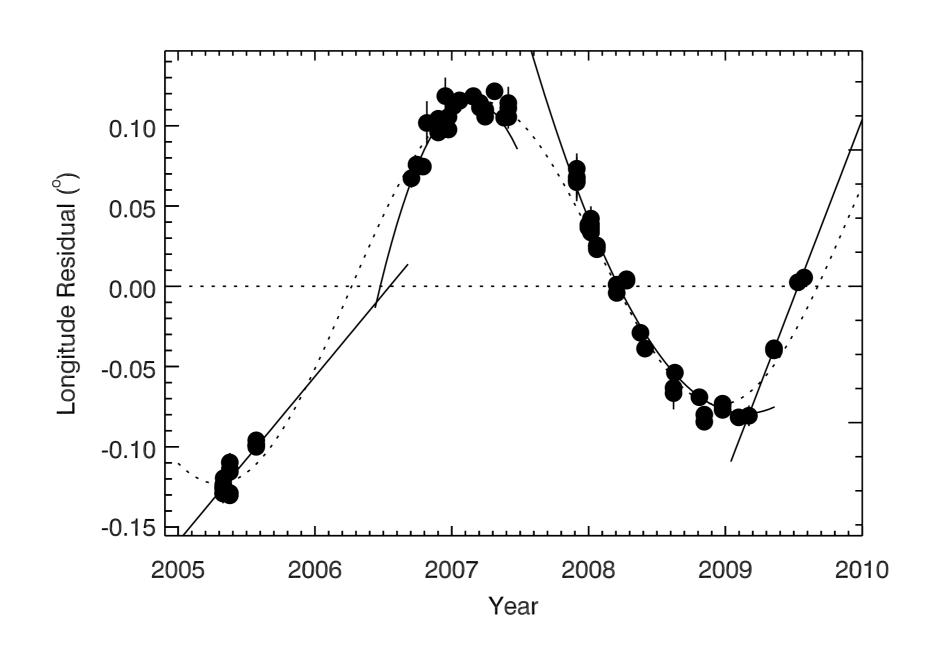
$$n = \sqrt{\frac{GM}{a^3}}$$

Mean longitude [rad]

$$\lambda = n t$$

$$\lambda(t) - \lambda_0(t) = \int_0^t (n_0 + n'(t')) dt' - \underbrace{\int_0^t n_0 dt'}_{n_0 t}$$

Observational evidence of non-Keplerian motion



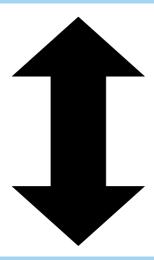
Random walk

Analytic model

Describing evolution in a statistical manner Partly based on Rein & Papaloizou 2009

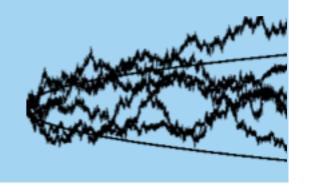
$$\Delta a = \sqrt{4\frac{Dt}{n^2}}$$

$$\Delta e = \sqrt{2.5\frac{\gamma Dt}{n^2 a^2}}$$

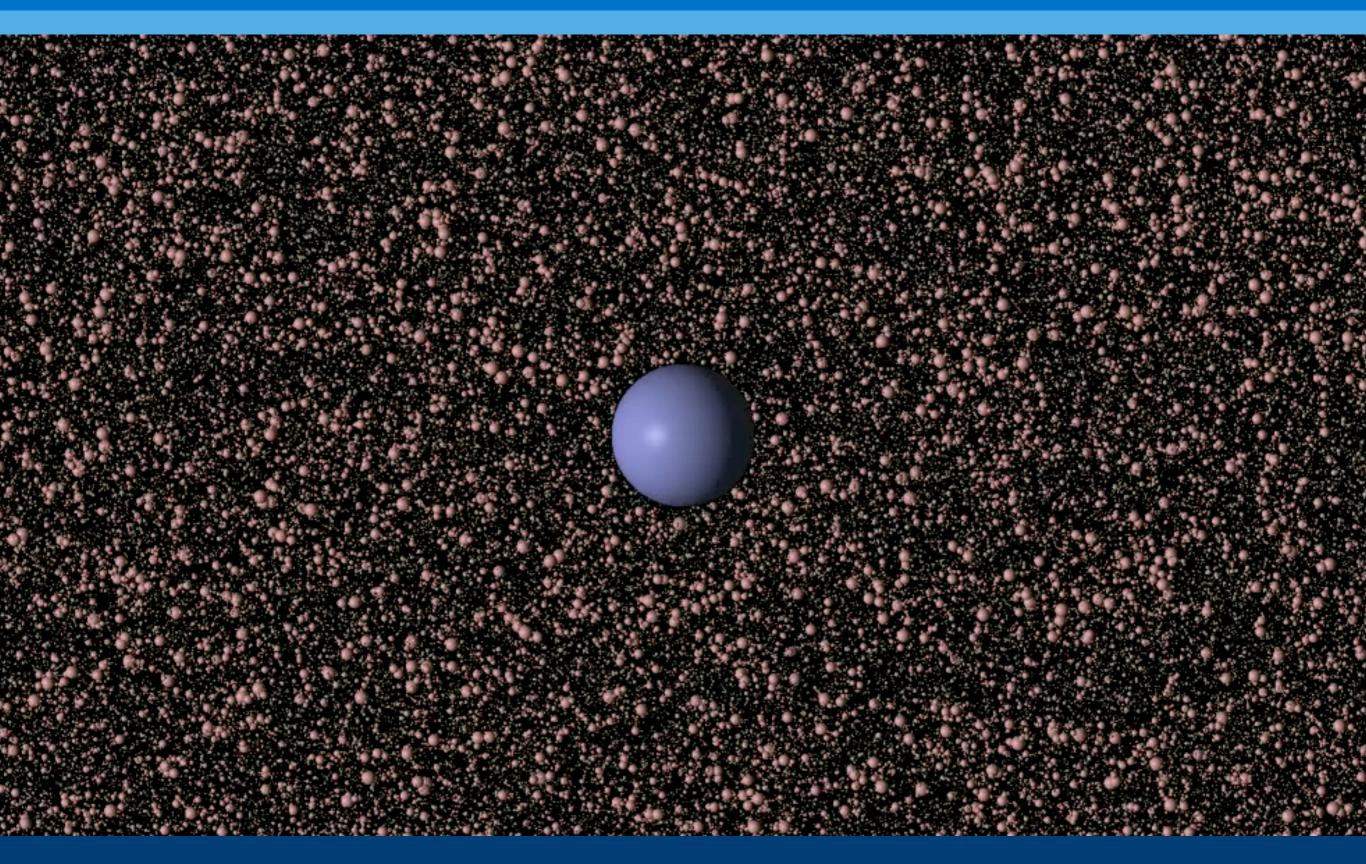


N-body simulations

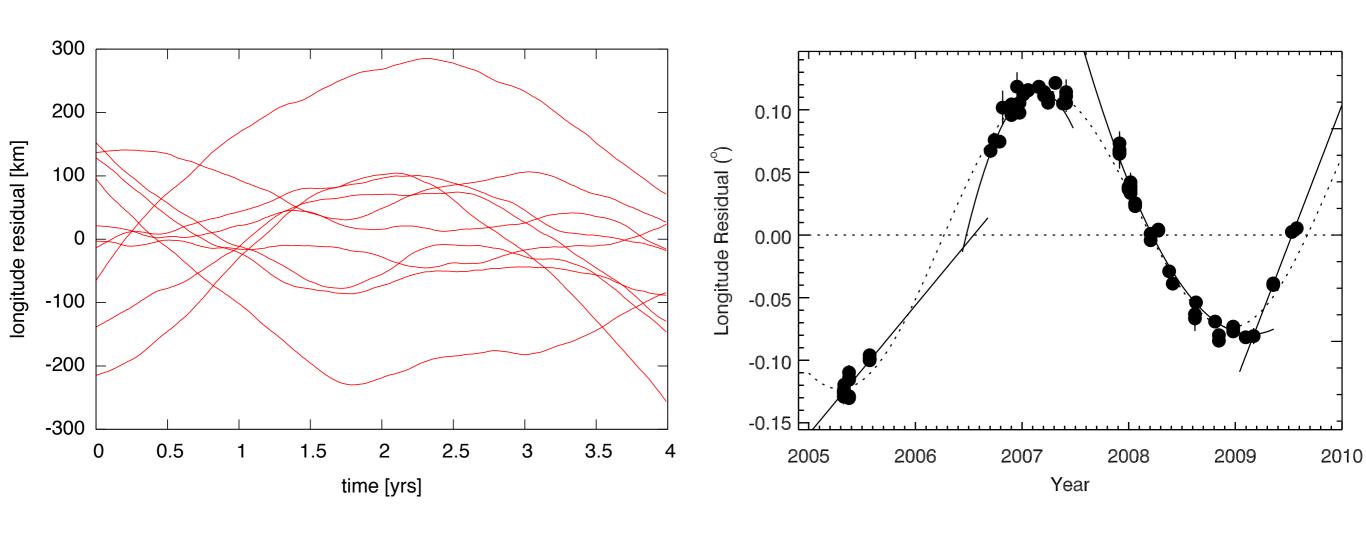
Measuring random forces or integrating moonlet directly Crida et al 2010, Rein & Papaloizou 2010



Random walk



Work in progress: a statistical measure



Take home message IV

Saturn's rings

small scale version of a proto-planetary disc

REBOUND

A new open source collisional N-body code

Numerical Integrators

• We want to integrate the equations of motions of a particle

$$\dot{x} = v$$

$$\dot{v} = a(x, v)$$

For example, gravitational potential

$$a(x) = -\nabla \Phi(x)$$

• In physics, these can usually be derived from a Hamiltonian

$$H = \frac{1}{2}p^2 + \Phi(x)$$

Symmetries of the Hamiltonian correspond to conserved quantities

Numerical Integrators

Discretization

$$\dot{x} = v \qquad \longrightarrow \qquad \Delta x = v \, \Delta t$$

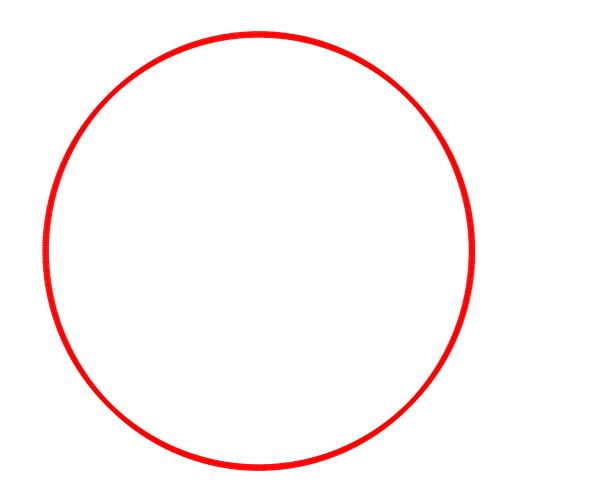
$$\dot{v} = a(x, v) \qquad \Delta v = a(x, v) \, \Delta t$$

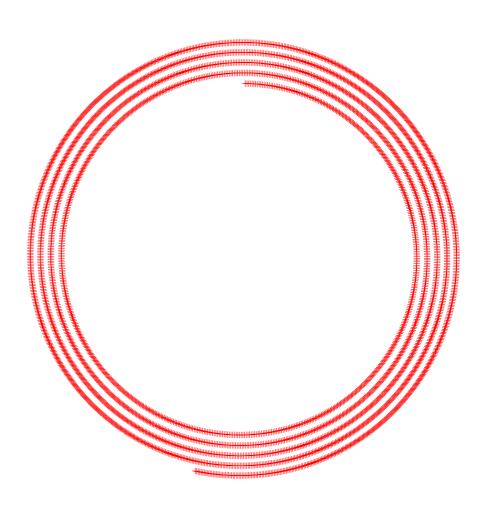
Hamiltonian

$$H = \frac{1}{2}p^2 + \Phi(x) \longrightarrow ?$$

- The system is governed by a 'discretized Hamiltonian', if and only if the integration scheme is symplectic.
- Why does it matter?

Symplectic vs non symplectic integrators





Mixed variable integrators

- So far: symplectic integrators are great.
- How can it be even better?
- We can split the Hamiltonian:

$$H = H_0 + \epsilon H_{\text{pert}}$$

Integrate particle exactly with dominant Hamiltonian

Integrate particle exactly under perturbation

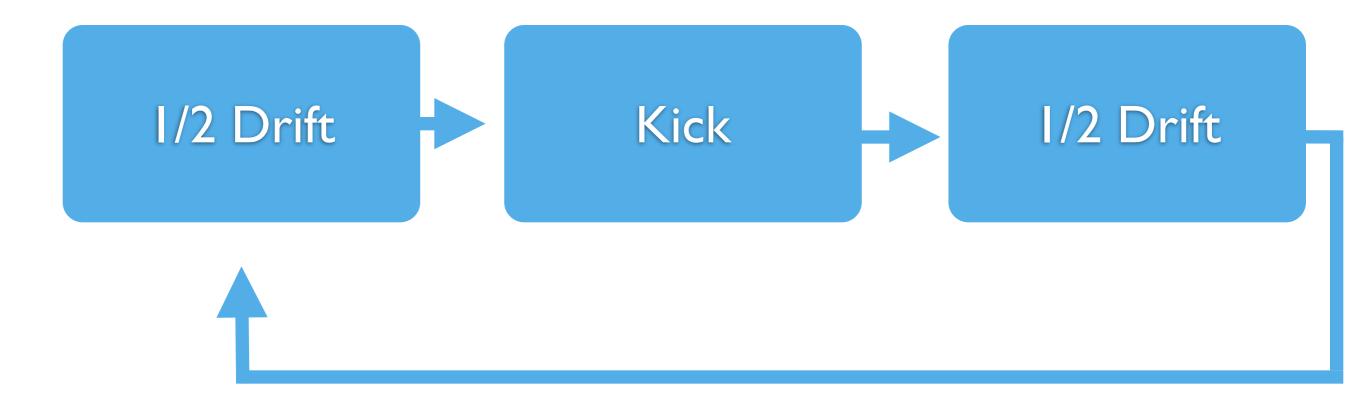
Hamiltonian

- Switch back and forth between different Hamiltonians
- Often uses different variables for different parts
- Then:

Error =
$$\epsilon (\Delta t)^{p+1} [H_0, H_{\text{pert}}]$$

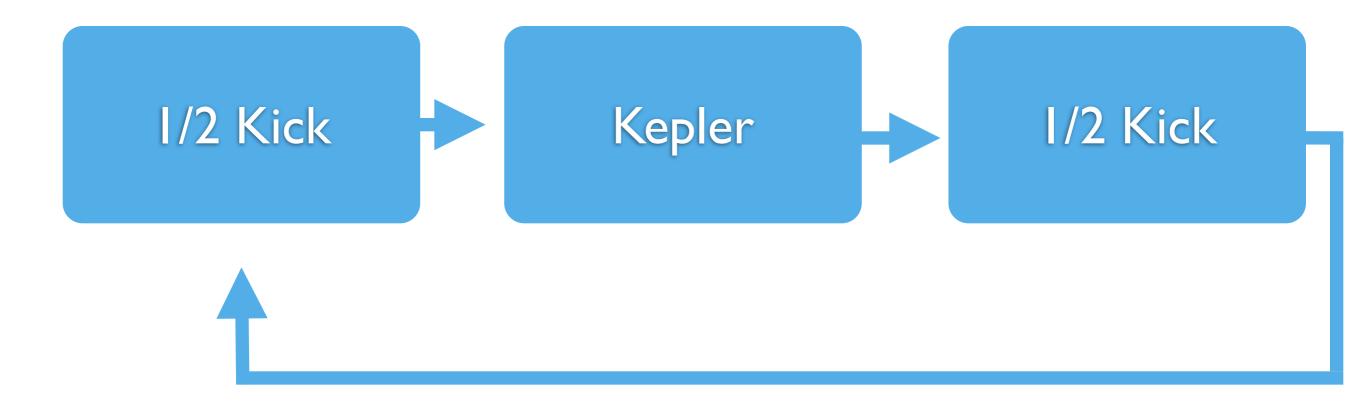
Example: Leap-Frog

$$H = \frac{1}{2}p^2 + \Phi(x)$$
Drift Kick



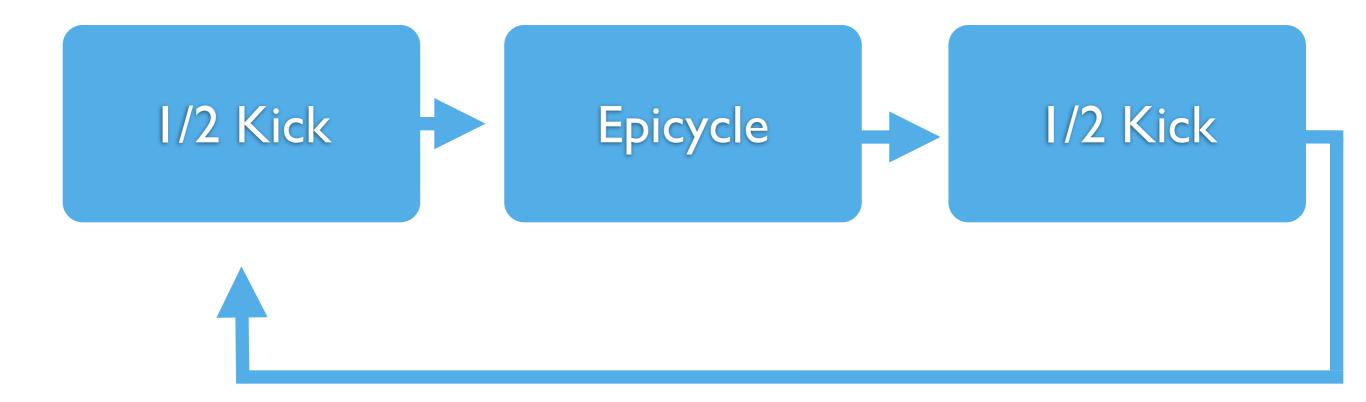
Example: SWIFT/MERCURY

$$H = \frac{1}{2}p^2 + \Phi_{\mathrm{Kepler}}(x) + \Phi_{\mathrm{Other}}(x)$$
 Kepler Kick

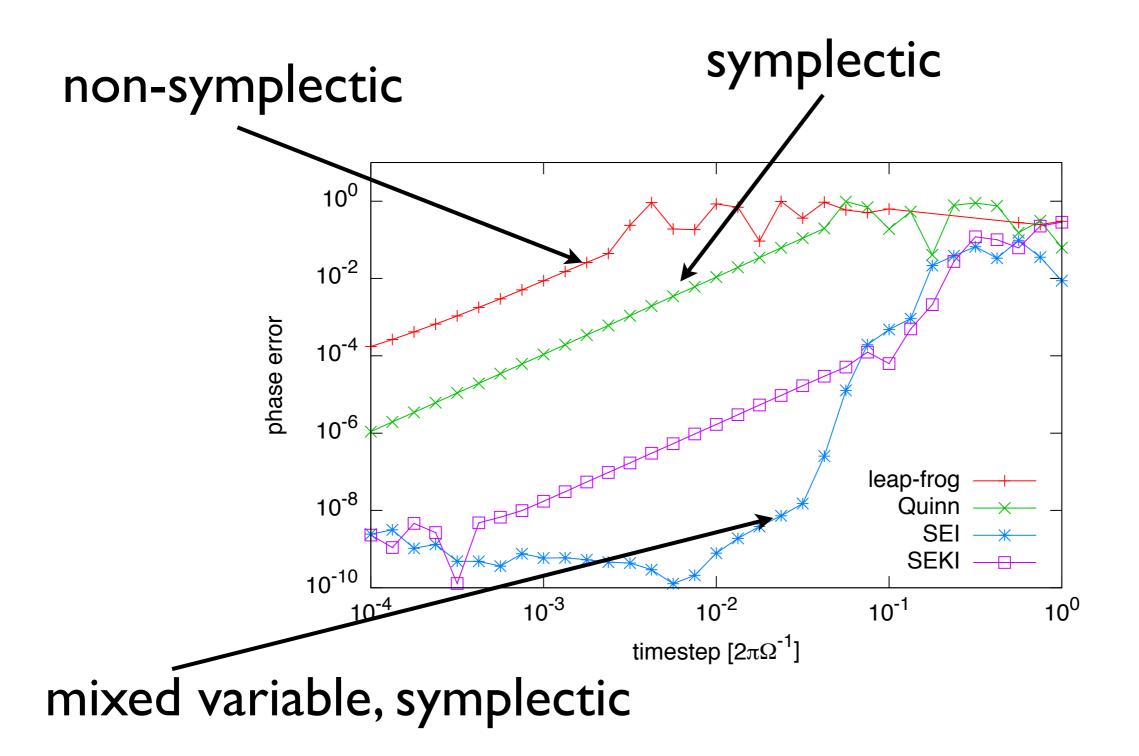


Example: Symplectic Epicycle Integrator

$$H = \frac{1}{2}p^2 + \Omega(p\times r)e_z + \frac{1}{2}\Omega^2\left[r^2 - 3(r\cdot e_x)^2\right] + \Phi(r)$$
 Epicycle



10 Orders of magnitude better!



Take home message V

symplectic integrators

awesome

REBOUND

Multi-purpose N-body code

Optimized for collisional dynamics

 Code description paper recently accepted by A&A

- Written in C, open source
- Freely available at http://github.com/hannorein/rebound

REBOUND modules

Geometry

- Open boundary conditions
- Periodic boundary conditions
- Shearing sheet / Hill's approximation

Gravity

- Direct summation, O(N²)
- BH-Tree code, O(N log(N))
- FFT method, O(N log(N))

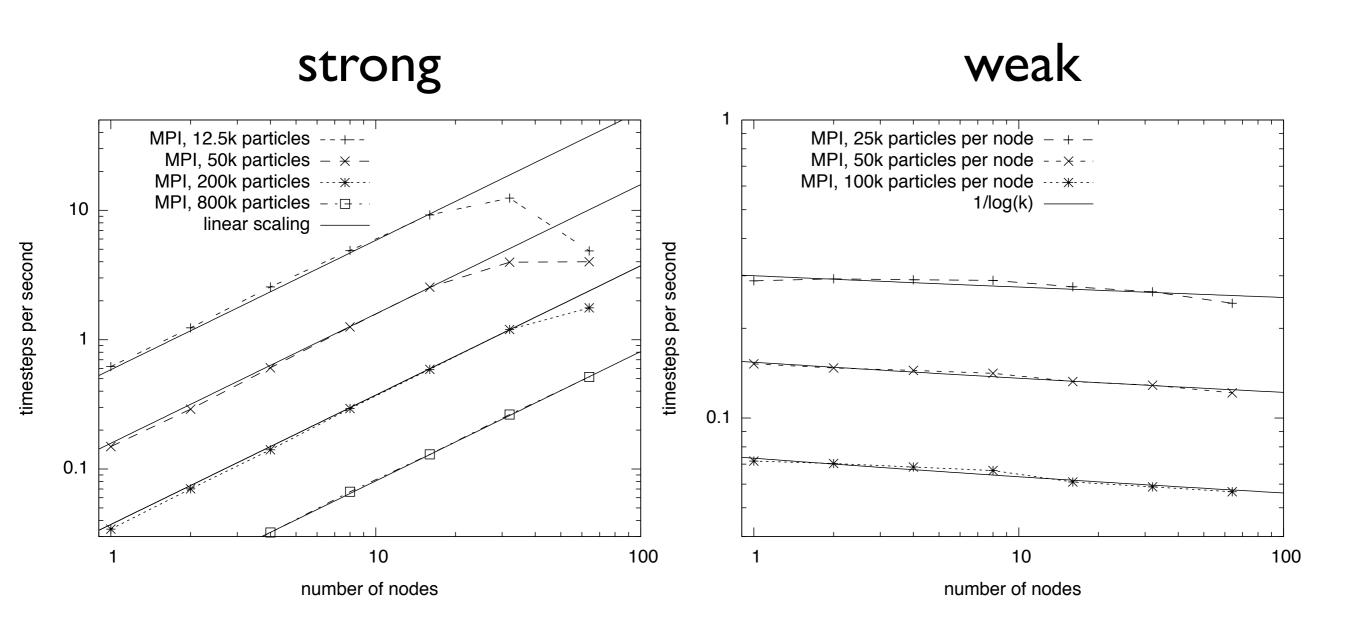
Integrators

- Leap frog
- Symplectic Epicycle integrator (SEI)
- Wisdom-Holman mapping (WH)

Collision detection

- Direct nearest neighbor search, $O(N^2)$
- BH-Tree code, O(N log(N))
- Plane sweep algorithm, O(N) or $O(N^2)$

REBOUND scalings using a tree



DEMO

Take home message VII

Download REBOUND

Conclusions

Conclusions

Resonances and multi-planetary systems

Multi-planetary system provide insight in otherwise unobservable formation phase

GJ876 formed in the presence of a disc and dissipative forces

HD128311 formed in a turbulent disc HD45364 formed in a massive disc

HD200964 did not form at all

Moonlets in Saturn's rings

Small scale version of the proto-planetary disc Random walk can be directly observed Caused by collisions and gravitational wakes

REBOUND

N-body code, optimized for collisional dynamics, uses symplectic integrators Open source, freely available, very modular and easy to use http://github.com/hannorein/rebound